Improving predictions of bacterial water quality with real-time networked sensors

Benjamen Wetherill

UMass Boston
School of Marine Sciences

- Methods for monitoring water quality
- Study sites & models developed
- Benefits of networked real-time sensors
- Results & Conclusions

Current methods for monitoring water quality

1. Lab analysis of water samples

- Requires 24 hours
- Handicapped by high variability of bacteria
- Little correlation with next day conditions

2. Modeling based on environmental conditions

- Positive correlation with rainfall, wind, turbidity ...
- Negative correlation with solar radiance, salinity ...
- 50-80% sensitivity

Model vs. Actuals

Current practices employed by beaches

- Most beach managers use previous day sample results [1]
- Some combine that with simple rainfall thresholds
 - Mass DCR sample positive <u>or</u> 24-hour rainfall > threshold
- Some use regression models based on hydro-meteorological data
 - CRWA rain, temperature, wind, river flow
 - Ohio "Nowcasting" turbidity, rainfall, lake stage, day of year
- Could not find any examples of real-time forecasts based on real-time data

Image credit: Amelia Kunhardt/The Patriot Ledger http://www.patriotledger.com/x1351155712/11-South-Shore-beachesclosed-to-swimming

Image credit: CRWA http://www.crwa.org/water_quality/daily/background.htm

Image credit: Ohio Nowcast http://www.ohionowcast.info/nowcast how.asp

Opportunity for Sensor Networks?

What are sensor networks?

- With current technologies, it is completely feasible to automate data collection, analysis, and reporting.
- Could water quality modeling benefit from automated data?

- Real-time data
 - Always updated with latest conditions
- Continuous data
 - Moving average trends instead of discrete points
- Localized data
 - Local data is always more relevant
- Connectable data
 - Data from multiple sources can be combined
- Automatable
 - Not dependent on a person being at work

- Methods for monitoring water quality
- Sites studied & models developed
- Benefits of networked real-time sensors
- Results & Conclusions

Two sites studied

- Charles River
 - Fresh water
 - River
 - *E.coli* bacteria
 - Samples 2x per week
 - 1½ seasons of data
 - Not open to swimming

- Wollaston Beach
 - Salt water
 - Bay
 - Enterococcus bacteria
 - Daily samples
 - 1 season of data
 - Open to swimming

Wollaston Beach

- Frequent beach closures
- Daily bacteria count data from DCR 6/25-8/30
- Environmental data sourced from...
 - CESN buoy
 - Boston tide gage
 - Umass weather station
- Modeled maximum daily bacteria from 4 sites

Wollaston: Explanatory Variable Statistics

- Statistical analysis of each variable highlighted...
 - Wind direction
 - PAR
 - Air temp
 - Tide phase
 - Tidal range
 - Rain

		Corr.	R ²	p-val	
Wind Direction (1.5x cst.)	24hr	0.47	0.22	0.0001	
	6hr	0.44	0.20	0.0002	
PAR	24hr	-0.37	0.14	0.0025	
	12hr	-0.29	0.08	0.0213	
	3hr	-0.25	0.06	0.0490	
Sample Light/Dark			0.07	0.0382	
Air Temperature	24hr	-0.38	0.15	0.0020	
Water Temperature	24hr	-0.12	0.01	0.3588	
Sample Ebb/Flood			0.12	0.0043	
Tidal Range	48hr	0.29	0.08	0.0199	
Sample Tide Level		-0.08	0.01	0.5079	
Rain (log)	72hr	0.31	0.10	0.0111	
	24hr	0.31	0.09	0.0126	
Days since rain		-0.23	0.05	0.0617	
Wind Speed (average)	48hr	-0.15	0.02	0.2307	
	24hr	-0.09	0.01	0.4697	
Salinity	24hr	-0.06	0.00	0.6342	
Turbidity	24hr	-0.02	0.00	0.8823	
Sample Time		-0.16	0.03	0.1984	

$$\ln\left(\frac{p}{1-p}\right) = 3.96 - 2.6T_p + 0.21\ln(R_{72} + 10^{-4}) - 0.40W_{24} + 0.22T_{24}M_{24}$$

Wollaston: Model Performance (daily)

Linear Regression

True Positive: 50%; True Negative: 98%

Logistic Regression (30% prob.)

True Positive: 79%; True Negative: 85%

Sensitivity

Specificity

Combined

True Positive: 86%; True Negative: 85%

Previous Day Bacteria

True Positive: 21% (2013), 14% (2012)

Logistic Model vs Samples

- Methods for monitoring water quality
- Sites studied & models developed
- Benefits of networked real-time sensors
- Results & Conclusions

Multiple updates per day

- Some conditions vary dramatically from hour to hour.
- Time of model calculation can significantly change results.

Multiple updates per day

 Hourly model updates raised sensitivities above 90% at both sites (> 5% increase).

• Charles: daily – 87% TP; hourly – 93% TP

• Wollaston: daily – 79% TP; hourly – 93% TP

 Frequent updates may also provide unknown information about non-sampled times of day.

Access to absolute latest data

- Ability to use latest data was key to Charles River model improvement.
 - Calendar day updates miss early morning events
 - Real-time updates capture early morning events

Access to absolute latest data

- Can value of data timeliness be quantified?
- Testing adjusted time buckets resulted in > 5% loss of accuracy with only 4-hour old data

Local data from local sensors

- Study evaluated benefit of local sensors
- Wollaston rain data collected from...
 - airport (6 mi) larger big storms, smaller small storms
 - local station (3 mi) consistently stronger correlations (~5% greater model accuracy)

	Local (UMass		Logan Air	port Rain
Correlation with bacteria (24hr)	0.31		0.20	
Correlation with bacteria (72hr)	0.31		0.21	
	R ²	p-value	R ²	p-value
Regression predictive strength (24hr)	0.09	0.013	0.04	0.107
Regression predictive strength (72hr)	0.10	0.011	0.04	0.089
	Sensitivity	Accuracy	Sensitivity	Accuracy
Linear model	50%	87%	43%	82%
Linear model built with Logan rain			43%	80%
Logistic model	79%	84%	71%	79%
Logistic model built with Logan rain			79%	80%

Some data can be sourced from existing sensors...

- River Flow USGS gage 9
 miles up river, but no tributaries
 in between
- Tide Height NOAA gauge 6 miles away, but matches local tide within 10 minutes

- Methods for monitoring water quality
- Sites studied & models developed
- Benefits of networked real-time sensors
- Results & Conclusions

Results & Conclusions

- Modeling with environmental variables can provide significantly better predictions than previous day water samples
- Hourly updates provide higher sensitivity and useful data about sub-24-hour changes
 - >5% improvement in sensitivities over daily updates
- Real-time latest data results in more accurate models
 - >5% loss of accuracy when data is 4 hours old
- Some variables must be collected locally
 - 5% loss of accuracy when rain data sourced from airport instead of locally

Acknowledgements

- Committee
 - Robert F. Chen, Crystal Schaaf, Bernie Gardner, Michael Shiaris
- Lab mates Hayley Schiebel, Jill Arriola, Keith Cialino
- Francesco Peri CESN
- Julie Wood CRWA
- Kelly Coughlin MWRA

Questions?

